Closed-form Design Method of an N-way Dual-band Wilkinson Hybrid Power Divider

نویسندگان

  • Y. L. Wu
  • Y. A. Liu
  • S. L. Li
  • C. P. Yu
  • X. Liu
چکیده

In this paper, the closed-form design method of an Nway dual-band Wilkinson hybrid power divider is proposed. This symmetric structure including N groups of two sections of transmission lines and two isolated resistors is described which can split a signal into N equiphase equiamplitude parts at two arbitrary frequencies (dual-band) simultaneously, where N can be odd or even. Based on the rigorous evenand odd-mode analysis, the closed-form design equations are derived. For verification, various numerical examples are designed, calculated and compared while two practical examples including two ways and three ways dual-band microstrip power dividers are fabricated and measured. It is very interesting that this generalized power divider with analytical design equations can be designed for wideband applications when the frequency-ratio is relatively small. In addition, it is found that the conventional N-way hybrid Wilkinson power divider for single-band applications is a special case (the frequency-ratio equals to 3) of this generalized power divider.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wide Band Nonuniform Substrate Integrated Waveguide (NSIW) Wilkinson Power Divider

A new wideband Wilkinson Power Divider which use the nonuniform substrate integrated waveguide (NSIW) method is presented in this paper. This structure utilizes NSIWs instead of the uniform quarter wavelength SIWs in conventional Wilkinson power divider. The proposed structure is analyzed by odd and even mode analysis. The proper NSIW section widths can be extracted by using even mode while the...

متن کامل

Design and Optimization of Multi-Band Wilkinson Power Divider

In this paper, a general and easy procedure for designing the symmetrical Wilkinson power divider that achieves equal-power split at N arbitrary frequencies is introduced. Each quarter-wave branch in the conventional Wilkinson divider is replaced by N sections of transmission lines, and the isolation between the output ports is achieved by using N resistors. The design parameters are the charac...

متن کامل

A Novel Design of Dual-band Unequal Wilkinson Power Divider

This paper presents the design of a novel dual-band unequal Wilkinson power divider. The proposed power divider can operate at arbitrary two frequencies without reactive components. The design and analysis of power divider are presented. The structure of the power divider and the formulas used to determine the design parameters have been given. Closed-form design equations are derived based on ...

متن کامل

Dual Band Wilkinson Power divider without Reactive Components

This paper presents an unequal Wilkinson power divider operating at arbitrary dual band without reactive components(such as inductors and capacitors). To satisfy the unequal characteristic, a novel structure is proposed with two groups of transmission lines and two parallel stubs. Closed-form equations containing all parameters of this structure are derived based on circuit theory and transmiss...

متن کامل

Dual-band Equal/unequal Wilkinson Power Dividers Based on Coupled-line Section with Short-circuited Stub

This paper presents dual-band equal/unequal Wilkinson power dividers based on a coupled-line section with short-circuited stub (called as the “coupled-line section” for short), which consists of a pair of parallel coupled lines and a short-circuited stub. With the analyses of the phase shift and equivalent characteristic impedance, the coupled-line section is used to replace the quarter-wavelen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010